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AbsIrscL We calculated the magnetization of small ferromagnetic panicles with uniavial 
anisotropy. llte numerical &la were cumpared with R p e r k " l  resuIIs for a magnetic 
liquid mnsisting of small amorphous F ~ , , q , t r  panicles in decalin. From the mmparison 
an anisolmpy mnstant K 'Y 3 x lo5 J m-3 was estimated. 

1. Introduction 

As a first approximation an ensemble of small magnetic particles, for instance in a 
magnetic liquid, can be described as a superparamagnetic gas of giant moments. The 
magnetization of the particles in thermal equilibrium in a static, homogeneous field 
may be described by a Langevin function and the initial susceptibilily, xi, depends on 
temperature according to the Curie law. Any deviation from the Langevin behaviour 
then reveals the differences between the ideal and real physical systems. The observed 
deviations from an ideal superparamagnetic behaviour have, in many cases, been 
explained by the fact that in reality the magnetic particles are not monodisperse: 
there is a distribution of sizes. By taking the size distribution into acmunt and 
calculating the total magnetization as a superposition of Langevin contributions from 
each particle size fraction, a better agreement between calculated and experimental 
data may be obtained (see, for instance, the work of Kaiser and Miskolczy [l] and 
Chantrell d QI [2]). However, on a closer examination of the data it becomes evident 
that there still remain some discrepancies in the intermediate field region. 

We measured the static magnetization, in fields up to 12 T of magnetic particles in 
frozen magnetic liquids and found that the data cannot be fully described by Langevin 
behaviour, even if the size distribution is taken into account. Thus we were motivated 
to investigate whether some of these deviations may be explained by the influence of 
magnetic anisotropy. The magnetic anisotropy has been included in calculations of the 
magnetic hyperfine splitting in Masbauer spectra of superparamagnetic particles by 
W r u p  et al (31 and in a theory for spin relaxation in small magnetic clusters by Jensen 
el QI [4]. We calculated the expectation value of the z component of the particle 
moment in an external field from a Hamiltonian which includes the dipole energy in 
the external field, as well as the second- and fourth-order anisotropy terms. The model 
is the same as in the superparamagnetic case of Jensen el QI [4]. However, in order 
to account for the experiments on magnetic liquids our numerical calculations cover 
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a wider range of magnetic moments and fields. We found that when the magnetic 
anisotropy is included, we can obtain a better agreement between the experimental 
and theoretical field dependence of the magnetization. In the following we describe 
how the anisotropy energy modifies the field dependence of the magnetization of an 
ensemble of non-interacting magnetic particles. 

2. The magnetization of particles with magnetic anisotropy 

21. The d e l  

The total energy, E, of a magnetic particle in an extemal magnetic field is given by 
the sum of the exchange energy, E,, the dipolar energy, EB,  and the anisotropy 
energy, E,. In the following we consider only the completely ordered magnetic state, 
that is at temperatures far below the Curie temperature, with parallel or antiparallel 
alignment of all the spins in the particle. In this case the magnetization of the particle 
acts as a giant magnetic moment whose magnitude is independent of temperature 
and field. The microscopic magnetocrystalline anisotropy is caused by the spin-orbit 
coupling, which has the symmetry of the actual crystal lattice. Ex small particles, 
however, the contributions to the anisotropy from shape, surface or stress, are in 
general much larger than the magnetocrystalline ones. In particles that are not 
perfectly spherical certain easy directions are favoured, and as a first approximation 
we consider only one easy axis. Then we calculate the expectation value of the z 
component of the magnetization including the terms E, and E, in the Hamiltonian. 

Let e and U be unit vectors along the directions of the easy axis and the 
magnetization respectively and p the angle between them, cf figure 1. With the 
magnetic field, B, applied in a direction which makes angles X with e and CY with U, 
the external magnetic field energy becomes 

where m is the magnetic moment of a particle with saturation magnetization I, and 
volume V. 

X 
43 

Figure 1. 7he (7aitesian mordinate system, TL, 22, 13, showing the unit wctors e, U 
and z in the directions of the easy ais, of the magnetic moment of the panicle. m, 
and of the magnetic Beld, B, respectively. 
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In uniaxial particles the anisotropy energy depends only on the angle p between 
the magnetization and the direction of easy magnetization in the particle. With terms 
up to fourth order and anisotropy constants Ku, K, and K4, this gives 

E,, = ( K u - K z ~ s z p -  K4cns4p)V. (2) 

In thermal equilibrium and for a fixed orientation of the easy axis the probability 
of finding the magnetization in the direction of zt is proportional to the Boltzmann 
factor 

f ( w )  = exp(-E/kT) = exp(-(E, + E,,) /kT).  (3) 

The expectation value of the z component of the magnetic moment is given by 

(m,(e)) = I,V(cosa) = I,V J msclf(u)d=/J  f (=)du .  (4) 
unit sphere unit sphere 

Using the notations in figure. 1, the following expression is obtained for the expectation 
value of the z component of the magnetic moment: 

-1 

x ( l Z r l r e x p ( A c o s a +  B,cos2p+ B2ms4p)sinpdpd’p) (5) 

where A = I ,VB/kT,  B, = VK,/kT and B, = VK4/kT. The factor coscl can 
be written coscl = z .  zt = sm X sin @sin p + cos X cos p.  

Let 
- - 
MI)  = exp(-i.i)m) m) = e x p ( - i w l ( z )  (6) 

where 1, and Il are the modified Bessel functions of order 0 and 1. Integration over 
‘p in the numerator and denominator of (5) then results in 

m,(X) = T ( X ) / N ( X )  (7) 

where 

T(X) = /r[cosXmsp~u(AsinX) +sinXsinP~,(AsinX)] 
a 

and 

N ( A )  =IT-& I Asin A)  exp(A cos(X - p)  + B, cos’p + B, cos4 p) dp. (9) 
U 

The numerical integration over p was carried out with NAG routine DOlAJF [5]. 
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For a random distribution of easy-axis directions the z component of m is finally 
obtained from the statistical average 

r 
m,(e)de = m,(X)sinXdX. 

m,=-J 1 
4?r unit sphere 

The integration of (10) was camed out with NAG routine DOlARF [5J. 
Should there be a preferential orientation of the directions of the easy axes of the 

magnetic particles, this may be taken into account by modifying the spatial distribution 
of the angle X in (10). 

22. Numerical results 

Let M ,  = Ma( Is, V, K2, K.,, T, B )  be the expectation value of the magnetization of 
an ensemble of particles with saturation magnetization I,, volume V, and anisotropy 
constants K2 and K4 at temperature T in field B. We carried out numerical 
calculations of M ,  from the integrals (5) and (IO) for different sets of particles, 
for instance with the values 

V, = 1.9 x m3 I , ~  = 3.4 x 16 A m-' 

and 

& = 1.8 x m3 IQ = 1.4 x 16 A m-'. 

These values are characteristic of iron oxide particles [6] and amorphous iron- 
carbon particles [? in magnetic liquids, respectively. The anisotropy constants 
K2 and K4 were varied in magnitude and sign in the range 1C-106 J n r 3 .  The 
results were compared with the corresponding values of the Langevin function, 
L = .L(Is, V,  T, B). Let the relative difference between the values in a given field 
be A( B) = (L  - M,) /L .  The numerical calculations showed the following: 

(i) The magnetization decreases for all fields when the anisotropy is turned on, 
with the Same amount for negative and positive values of K2. This is an effect of the 
averaging over a random distribution of the angle A. 

(ii) In the limits of high and low fields M ,  approaches the Langevin value. The 
largest inhence of the anisotropy is observed in the intermediate field region. For 
small values of the anisotropy the maximum of A( B) occurs in a field where the 
ratio mB/kT N 3. The position of the maximum remains mainly independent of the 
anisotropy until A(B) approaches values of the order of 10%. Then the maximum 
is shifted towards significantly higher fields. 

(iii) For a given set of particles A(B) increases roughly quadratically with K2 
when K4 = 0. This quadratic dependence on K is also found when we calculate m, 
from a series expansion of (5) for low fields and small K, with IC4 = 0. 

(iv) The influence of the fourth-order anisotropy term was studied for the particles 
with V, = 1.8 x IO-% m3 and I* = 1.4 x IO6 A m-I for K, in the range 2 x 105- 
3 x 105 J w3. Almost the same effect on the magnetization may be obtained by 
increasing or decreasing the value of IC, as by increasing or decreasing that of K& 
The main effect of K4 was to slightly modify the shape of the magnetization curve. 
(We did not include this term in the comparison hith the experimental data.) 
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Figure 2 illusaates how the anisotropy modifies the magnetization of the particles. 
The calculated field dependence of the magnetization at 100 K is plotted for 
a set of different values of Kz and with K4 = 0 for magnetic particles with 
V, = 1.8 x lo-% m3 and Ia = 1.4 x lo6 A m-l. K, = K6 = 0 yields the Langevin 
function. As can be seen in the figure, the deviation from Langevin behaviour is 
largest in the intermediate field region, around 0.2 'I: This is the region where we also 
observe the largest differences behveen the experimental data and the corresponding 
Langevin function. 

I 
0 0.2 0.4 0.6 0.8 1.0 

B [TI 
ngure 2 me influence of secondader anisotropy on the magnetization of small 
femmagnelic particles. ?he calculations were made wilh equalions (5) and (lo) for lhe 
particle volume 1.8 x lo-" m3 and SaNralion magnetization 1.4 x Id A m-' at 100 K 
The NCV~S appear in the same order as the anisotropy mnstanu in the figure. In all 

K, = a 
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BIT1 
Figure 3. ?he magnetization of a (frozen) magnetic liquid wilh Saturation magnelizalion 
21 kA m-' measured at ZW K, 1W K and 50 K and the curresponding Langevin 
functions Cdlculated for monodisperse panicles with volume 1.8~ lo-" m3 and saturalion 
magnetization 1.4 x lo6 A m-l. 

3. Comparison with experiments 

The model described above may be applied to describe the properties of a magnetic 
liquid if the following conditions are fulfilled: 
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(i) The temperature must be low enough to prevent the particles from rearranging 
themselves spatially, that is the liquid should have a high Viscosity or be frozen. 

(ii) The thermal energy must be sufficient for the particles to reach thermal 
equilibrium within the measuring time, that is the temperature should be above the 
superparamagnetic blocking temperature. 

(iii) The concentration of magnetic particles must be low enough to makc the 
interactions between the particles negligible in the actual temperature range. 

For a comparison between experimental and theoretical data we chose a magnetic 
liquid consisting of small, amorphous particles of Fe,-,C, in decalin. In this liquid 
particle interactions are negligible for saturation magnetizations between 0.7 kA m-’ 
and 21 kA m-l [7J The magnetization of a sample cooled in zero field and measured 
in a mnstant field of 0.002 T during warming has a maximum at about 20 K, which is 
interpreted as due to blocking of the superparamagnetic relaxation in single particles. 
At temperatures above the maximum the Liquid is superparamagnetic, with xi obeying 
a Curie law. Thus, for T 2 50 K the liquid is well above the superparamagnetic 
blocldng temperature. No particle rearrangement was observed in the liquid. The 
estimated diameters of the amorphous Fe,-=C= particles (with z Y 0.25) are 3.2 nm 
with a very MITOW size distribution [7l. The Liquid was cooled in zero field to a 
crystalline state at 10 K [SI. Then the sample was successively warmed to 50 K, 100 K 
and ux1 IC At each of these temperatures the static magnetization was measured with 
a vibrating sample magnetometer in magnetic fields of up to 12 T 

The magnetization of the liquid increases faster than does the Langcvin function 
in high fields. It does not saturate even in fields as high as 12 T This implies that 
the particles have a field dependent intrinsic magnetization. The experiments show 
that the magnetization increases linearly with the field above 4 T We know that in 
liquids prepared with this method there are Fez+ and Fe3+ ions present, which can 
account for at least part of this slope [9]. In the normalization of the calculated 
data we made a correction for this increase and used an extrapolated value for the 
spontaneous magnetization. The magnetization of polydisperse particles, ~alculated 
from a superposition of Langevin contributions, is larger than for monodisperse 
particles and the largest differences occur in low fields [2]. In this region the influence 
of the anisotropy is small. In fields of the order of 0.2 T, where A( B) has its 
maximum, and for a small variation in particle size, the increase for polydisperse 
particles above the monodisperse Langevin value is partly compensated by a larger 
value of A( B). We found that for our particle sizes and values of anisotropy constants 
the particles may be treated as monodisperse with the volume V, and the saturation 
magnetization given above. This corresponds to the mean values of volume and 
magnetic moment of the particles. 

In figure 3 the experimental data for the liquid with saturation magnetization 
21 kA m-l are plotted together with the Langevin function. Thc largest values of 
A( B) are about 3%, 8% and 19% at the temperatures 200 K, 100 K and 50 K 
respectively. The positions of the maxima of A(B) are 0.1 ‘I; 0.2 T and 0.35 T 
respectively. We have already shown above that for these particles the numerical 
calculations yield the largest values of A ( B )  in this field range. The value of If, 
was then adjusted to yield the same decrease below the Langevin function. This was 
obtained for K2 % 3x I d  J w3. It can be seen in figure 4 that we obtain a substantial 
improvement of the description of tbe experimental data in the intermediate field 
region when we include the anisotropy compared to that obtained with the simple 
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Figure 4 me magnetization of a (frozen) magnetic liquid with saturation magnetization 
21 kA m-' measured at ZW Y 100 K and M K, and the corresponding magnetizations 
calculated f" equations (5) and (10). me calculations were made for panides with 
volume 1.8 x lo-% m', Saturation magnetization 1.4 x IO6 A m-l and anisotropy 
mnstants Kz = 3 x lo5 J m-3 and K4 = 0. 

Langevin function, shown in figure 3. 
An anisotropy constant K = 2.7 x l@ J m-3 was obtained from a comparison 

between the superparamagnetic blocking temperatures observed by Mossbauer 
spectroscopy and magnetization measurements, with different measuring times [7) 
Thus we conclude that the magnetic anisotropy of the particles can explain the 
deviations of their magnetization from Langevin behaviour in an intermediate field, 
of the order of 0.2 'E 

4. Conclusions 

We calculated the magnetization for small ferromagnetic particles, including the effect 
of magnetic anisotropy and found that this gives the same kind of deviations from 
Langevin behaviour as observed in experiments. The effect of anisotropy is small: less 
than 1% deviation at 1M) K for anisotropy constants less than 1@ J m-3 for particles 
with sizes and magnetic properties that are characteristic of magnetic liquids. In 
order to explain the largest experimentally observed deviations, >19% in the actual 
temperature range, the anisotropy must be of the order of l@ J m3. This value is 
high compared to bulk values for crystalline materials. It is, however, in excellent 
agreement with the value obtained from other experiments on the same liquid. 

In the analysis of small particles magnetization curves are often used to extract 
particle sizes. Our results show that then one has to consider not only the particle size 
distribution, but also the influence of anisotropy. In particular one should ascertain 
that the saturation magnetization is estimated in a field that is high enough to make 
any deviation from Langevin behaviour negligible. 
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